《相遇》教学反思
身为一名人民教师,我们需要很强的教学能力,通过教学反思可以很好地改正讲课缺点,教学反思应该怎么写呢?下面是小编精心整理的《相遇》教学反思,欢迎大家分享。
(一)寓教与乐,感知重点
相遇问题的重点和难点是对于题中关键字眼的理解,如果单纯的从题目出发
对这些字眼进行讲解,我想教学的效果也不会很差,但是缺少了关键的一点,那就是体验。对于小学生来讲体验过的知识能加深理解与感悟,为后续学习带来极好的知识铺垫,所学的知识印象深刻,自然地知识的运用也会更灵活与正确。在教学教学相遇应用题时,我让同桌两名学生分别扮演甲车司机和乙车司机,在自己的课桌上演示相遇过程,充分调动了学生的学习积极性和主动性。学生在一次次愉悦的演示过程中,感受理解相遇应用题的规律和特征。
(二)合作学习,突破难点
在学习过程中我安排同桌小朋友一起演示相遇的过程,对很多学生来讲“合作是一种乐趣”。学生在进行合作演示相遇过程的时候,思维的火化不断地被点燃。在巡视过程中我发现同学们的争论是多么的有价值。“应该离我近点,我的速度比你快。”“ 不应该在正中间相遇的,他们的速度是不一样的,正中间相遇肯定是不对的。”“我还没有说开始呢,你自己怎么就先开走了” 。学们在体验该过程的时候引发的思考正是解决问题的关键,这比教师强加给他要生动许多、有趣许多,更真实而有效的过程为他们理解相遇问题中的重点和难点起到了很好的铺垫作用。正由于学生在自主学习中的合作学习,能够积极地推动学生学习的主动性和学习的兴趣,从而提高学习的效率。当然合作学习不仅仅只是为了学习,而且更重要的是要培养学生的一种合作意识,让他们意识到小组中的每一个人都是学习伙伴,都是合作者。
(三)以图为导,学会方法
我们都知道生活是具体的,数学是抽象的。我们应该把数学抽象的内容附着在现实的情境中,这样才能让学生去学习从现实生活中产生、发展的数学。因此当我们进行了演示后,我把重点放在了如何用线段图表示刚才的题意。我们知道线段图使题意更加形象直观,数量关系更清楚,是我们理解和简化行程问题的好办法。多用这样的方法去思考问题,对于提高我们的逻辑思维能力,大有好处。教学中我首先让同学们看根据例题所画的线段图,让同学们在没有文字提示的情况下看图理解题意,学生通过观察线段图,得到了许多的解题信息。在此基础上再出示例题让学生对比自己通过线段图所找的信息是否有误或者遗漏。这样做的目的是让学生知道,好的线段图能很好的反映出题意,帮助理解题意,所以我们在解决此类问题时也应该画线段图帮助自己理清思路。
本节课在力求扎实的基础上作一点创新,有几点体会。
一、创设情境,理解概念
两地、同时、相向、相遇是相遇问题的四要素,如果只是抽象地讲解这些概念既不利学生的理解,又使学生对应用题感到枯燥,缺乏兴趣。因此我在本节课中创设了三种情境。
1、问题情境问题是引发学生思维的起点。通过实际生活中班干部需要当面商量班级事情引出相遇问题。调动了学生思维的积极性,增强学生探索动机。
2、表演情境让两个学生表演“相向而行”其他同学以数学的眼光来观察走路这一平常现象,引出“两地、同时、相向、相遇”的概念,建立起概念的具体表象,为概括出相遇问题的数量关系打下基础。
3、课件演示情境学生对相遇问题的理解关键是要理解每经过一个单位时间两物体的路程变化。四个要素中,“相遇”既是重点概念又是难点内容,相遇是个动态的概念,是两物体所行路程不断增加,相对距离不断缩小的结果,
在数学上表述为“当两物体距离为0时,表明相遇”由相遇引出两个要点:1、相遇时两物体所用时间相同;2、相遇时两物所行路程和等于总路程。这两点是解决相遇问题的关键。准备题中通过课件的动态演示能很好地解决这一问题。同时在演示中又蕴含着“速度和”的含义,为例题的解决作了铺垫。在相遇问题的两种解题思路中,第二种解法较为简便,但理解相对较难些,学生也是通过课件的演示来更好地理解速度和乘以相遇时间等于总路程的含义。
二、突现主体,适时而导
这节课我想对应用题的传统教学思路稍作改变,把老师出题,学生读题,审题、解题的被动的接受式教学方式转为学生主动解决问题的方式。由老师给学生提供生活中一个熟悉的情境――学生上学途中相遇这一日常生活常见现象。通过课件演示,然后由学生编题,尝试解决,小组汇报比较策略,让学生的主体性发挥出最大化。教师只是在学生出现“愤”、“悱”状态时的适时引导,做到“启而不发”。如在学生编完题后,抓住关键点让学生谈谈对“4分钟相遇”这句话的理解,在学生汇报两种解题思路后,针对部分学生对第二种解法的不易理解情况,再辅以课件演示,突破对速度和的理解,从而对速度和乘以相遇时间等于总路程这种数量关系心领神会,并为下节课求相遇时间打下扎实基础。
三、层递练习,优化思维
数学有思维健美操的美称。应用题教学既可培养学生运用所学知识解决简单实际问题的能力,又同时训练学生的思维能力。本节课,在学生理解和掌握相遇应用题的结构特征和解题思路后,精心设计层递性的练习,循序渐进,使学生思维逐步引向深入。在基本练习巩固新知后,设计了“通过变换时空”的变式题,由相遇应用题的特征因素“同时、相向”而行变化为背向、先行的问题。使学生通过分析后也能用相遇问题的思路来解决,使得思维由简单的模仿到初步的创新,在课堂小测验中,设计一道“两人一起行走了5分钟,求路程的问题,既可培养学生认真审题的习惯,又可检查学生对速度和乘以相遇时间等于总路程这种数量关系的理解和运用,在行走时间上设置思维发散点,让学生进一步考虑一起行走了5分钟后可能出现几种情况,然后现出示相应的问题让学生解决,从中培养学生发散思维能力。
思考与困惑:本节课在实施过程中未能很好地调动学生的积极性,课堂显得沉闷。如小测验中的`三道选择题,当学生出现不同的答案时,可以组织讨论,然后再继续解答。另外对两种解法的数量关系强调得还不够。特别是准备题中的“两家的距离等于两人走过的路程”,这关系太过于轻描淡写了。
《相遇》教学反思这节课的主要内容是相遇问题,要求会用线段图分析简单实际问题的数量关系,提高用方程解决简单实际问题的能力,重点是会列方程解决相遇问题中求相遇时间的问题,难点是相遇问题相等关系的抽象,对同时相遇的理解。
教学之后产生了一些想法:
1、情境的创设能吸引学生,引导学生将生活问题转化成数学问题,学生比较容易理解“相遇”,并能自主地分析并尝试解决问题,本着“从生活入手—抽象成数学问题——尝试解决方案—应用生成的知识解决更多问题“的思路展开教学。有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。
2、教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的体验。尤其是在得到用列方程方法解决相遇问题的最初步骤,我较大地利用了直观的演示作用,学生容易理解“相遇”的数量关系,整个过程在教师的“主导”,充分发挥了学生自我思考、探索、思辩的作用。但是,由于本人的教学水平不高,本课时的教学也存在一些遗憾。
1、比如在如何引导学生发现解决相遇时间的方案中,学生能很好地利用等量关系式列方程,但在列方程时,部分学生没有很好地将方程的格式写好,特别是“解和设”,我在评比时虽然注意到这个问题,但没有重点进行评讲,结果导致后边的练习也出现了这种现象,学生由于模仿性强,所以教师更应该小心谨慎,画线段图也是一样。
2、另外本节课的教学,由于时间掌握得不够好,在学生板书例题的解法后,我没有再展开来讲,介绍别的解法,(40+60)X=40,例如算术法,40÷(40+60)等,没有让学生更好地发散思维,没有让学生更好地理解顺思维与逆思维解法的区别。
相遇问题是两个物体从两地出发,经过一段时间,必然会在途中相遇,我们就把这种问题叫相遇问题。这节课的重点是用方程解决相遇问题中求相遇时间,难点是分析问题中的数量关系。它和一般的行程问题的区别在于不是一个物体的运动,所以,它的研究的速度包含两个物体的速度,也是速度和。我是这样设计的:
一、创设情境,初步理解相遇问题
请两名同学到台前做一个互动,两人同时从两边到我手里拿笔。随机问:他们现在怎么样了?学生说:相遇了。
板书:相遇问题。
接着问:从刚才的互动中,你们发现了什么?
学生说自己的发现,教师随机板书。(不同的地点、同时、相向而行)
过渡:生活中我们经常会遇到相遇问题,大家看:出示“送材料” 情境图。
二、探索新知。
1、仔细观察,你找到了哪些数学信息?
2、估计两辆车在哪里相遇?相遇时,两辆车行驶的时间相同吗?谁愿意把图上的情景给大家再现一遍?
大家边看演示边思考,然后发表自己的看法解决问题
3、为了便于我们观察理解,把这条路线拉直,用一条线段表示遗址公园到天桥的距离,是50千米。你能用线段图表示出情境图吗?
学生动手试一试,然后在投影仪展示并解释。
师出示规范线段图。
4、那么面包车、小轿车行驶的路程和两地之间的路程有什么关系呢?
三、自主探究,尝试解决问题:
1、他们行驶的时间是相同的,那么经过几小时相遇?你会解决吗?
2、和小组同学交流想法。
3、汇报小组交流情况
4、总结:同学们的方法都不错!那我们就选择其中的一种用方程的方法解决相遇中求时间的问题。在解决问题时,我们通常先读懂题目;然后找出数量关系式;再设未知数;根据数量关系式列出方程;最后解答验证。生活中还有许多相遇问题的情况。你能用方程的方法解答吗?
四、应用新知,扩展练习
1、教材第57练一练3、4,试一试。
2、补充拓展。(见幻灯片)
五、总结:
谈谈你的收获。(没想到这节课我们的收获真不少,看来学好数学能让我们生活更丰富、更精彩!)
六、板书设计
仅从我的设计上看好像没什么问题,我也觉得比较合理,但是在课堂中却让我万分焦急 、束手无策!
分析原因 :
1、从创设情境开始,再让学生说发现时,学生只发现了两人是同时去拿笔的。我引导着说出了方向和地点。为了让学生更容易理解相遇 ,我归纳的 (不同的地点、同时、相向而行)有些啰嗦!
2、我设计的问题可能超过了学生的思维能力。
比如:在问张叔叔和王阿姨可能在里相遇时,学生其实估计对了。我又问那为什么估计在李庄而不是在郭庄?此时学生真不知道,还是在我的牵引下得出了原因。
再有,在学生亲身演示感知了张叔叔和王阿姨送材料时的情景之后,我让学生画线段图理解题中的数量关系。出乎我的想象,同学们根本就不会画我所要求的。
3、遇到课堂生成,我不会随机应变只是脑子一片空白,蒙了。在学生不会画线段图时,我真不知道该怎么办。是引导学生继续画线段图?还是?我在接下来就直接给学生出示了线段图,也许学生有些懂了,也许……在这后面的教学中我把我的教学程序就灌输给了学生,整个课堂是一团糟。更不知道该如何收场,唉!我真的很笨!
课后我仔细斟酌:这样的灌输也许学生有能接受,但我从课堂上还是找不到学生自己探索的影子,找不到学生真正学会的表情。我想不管是公开课还是平时的教学,视情况应该着手解决学生不会的问题。哪怕是完不成当堂的任务,只要学生有自己的收获,就算是一点点也是可以的。至少能看到一节课的重点,知识都是从点滴积累起来的。
数学教学是数学活动的教学,是师生之间、学生之间交往与共同发展的过程。数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。
相遇问题是在学习了速度、时间和路程的数量关系的基础上进行教学的,由一个物体运动的特点和数量关系为基础来探索两个物体运动的特点和数量关系。本节课我从“书本数学”向“生活数学”转变,大胆“舍弃”书本过于知识化、形式化的例题,对教材合理整合,使学生学现实的、有意义的、有价值的数学,使学生感受到数学源于生活,又用于生活,从而增强学生学好数学的信心,激发学生学习数学的兴趣。因此我在设计上力求体现让学生在活动中学数学这一思想,创设了两个走路的情境,先是一个人走路,让学生带着问题观察、思考,复习速度、时间、路程的有关计算,为新课的学习做好铺垫。接着是两个人走路,两个人相对而立,同时出发,知道碰到为止。让学生观察后描述他们走路的情况,揭示出同时、相对、相遇等术语的含义。进而探究两个人走路中的实际问题,即相遇问题。根据本班学生特点,我让两名同学演示走1分钟两个人分别走了多少米和两个人共走了多少米,接着演示2、3、4分钟两个人分别走了多少米和两个人共走了多少米,并用线段图表示出两个人所走的路程,在此基础上,学生顺利地列出了求两地距离的两种算式,并比较了两种方法的不同之处,但此时忽略了让学生选出更为简单的方法,导致练习时学生用速度和乘时间这种方法的人不是很多。另外,本节课的教学内容涉及到的情况较多,既相向运动有求路程的,又有求相遇时间的,还有相背运动求路程的,对于后进生来说可能有些应接不暇,如果把求相遇时间的内容放在下一课时,练习再充分些,学生掌握的会更扎实一些。
1、数学的来源于两个途径。
一个是现实生活,另一个是数学的内部结构。强调数学与生活联系,更直观。强调数学内部,更抽象。直观能很好把握实质,抽象更够高度概括。两者不可偏废。这虽然是一节实践与综合应用的练习课,依然可以体现其数学内部的结构。不仅仅是考虑其生活的起点,也要考虑数学学习的脉络。相遇问题求同时出发相向而行最后相遇时最为基础的,其次是求相遇时间,再者是求某一方的速度。不过第二和第三也可以交换。因为从教材来看,方程和算术方法同等重要。
2、相遇问题建立模型的关键是什么?
在教学中,我注重学生审题,逐字推敲,也注重线段图的使用。不过相遇问题最核心的建立模型的地方是两人所行路程的和等于全程,推敲字句和画图都是为了这个服务的。我会让学生首先求全程,再让学生画图。但是我不指导学生,也不要求美观,只要画出题目意思就可以了。即使学生画错了,也可以放到黑板上(不点名)。让大家来点评这个图怎么样。让学生把题目中收集到的信息一个个来分析。画图也就成了收集信息的过程,而信息用图画出来,也是加工信息的过程。图修改晚了,让学生说一下“两个人行的路程和我们要求的全程有什么关系呢?”这样学生就深入了数学的实质,数量关系的一一建立,再放手让学生解决问题。后面的题都让学生回顾我们研究的过程,让学生依照前面的学习经验去自主解决问题。同样抓住“两人行的路程和全程有何关系”。接下来也可以进行使用方程还是算术方法的指导,绝对不是规定,两种方法让学生自己去选择。
文档为doc格式